Add like
Add dislike
Add to saved papers

Untangling the environmental and tectonic drivers of the Noto earthquake swarm in Japan.

Science Advances 2024 May 11
The underlying mechanism of the ongoing seismic swarm in the Noto Peninsula, Japan, which generates earthquakes at 10 times the average regional rate, remains elusive. We capture the evolution of the subsurface stress state by monitoring changes in seismic wave velocities over an 11-year period. A sustained long-term increase in seismic velocity that is seasonally modulated drops before the earthquake swarm. We use a three-dimensional hydromechanical model to quantify environmentally driven variations in excess pore pressure, revealing its crucial role in governing the seasonal modulation with a stress sensitivity of 6 × 10-9 per pascal. The decrease in seismic velocity aligns with vertical surface uplift, suggesting potential fluid migration from a high-pore pressure zone at depth. Stress changes induced by abnormally intense snow falls contribute to initiating the swarm through subsequent perturbations to crustal pore pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app