Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Understanding stoichiometric constraints on growth using resource use efficiency imbalances.

Growth is a function of the net accrual of resources by an organism. Energy and elemental contents of organisms are dynamically linked through their uptake and allocation to biomass production, yet we lack a full understanding of how these dynamics regulate growth rate. Here, we develop a multivariate imbalance framework, the growth efficiency hypothesis, linking organismal resource contents to growth and metabolic use efficiencies, and demonstrate its effectiveness in predicting consumer growth rates under elemental and food quantity limitation. The relative proportions of carbon (%C), nitrogen (%N), phosphorus (%P), and adenosine triphosphate (%ATP) in consumers differed markedly across resource limitation treatments. Differences in their resource composition were linked to systematic changes in stoichiometric use efficiencies, which served to maintain relatively consistent relationships between elemental and ATP content in consumer tissues and optimize biomass production. Overall, these adjustments were quantitatively linked to growth, enabling highly accurate predictions of consumer growth rates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app