Add like
Add dislike
Add to saved papers

Design and Non-Linearity Optimization of a Vertical Brushless Electric Power Steering Angle Sensor.

Sensors 2024 April 13
This paper presents the design and the non-linearity optimization of a new vertical non-contact angle sensor based on the electromagnetic induction principle. The proposed sensor consists of a stator part (with one solenoidal excitation coil and three sinusoidal receiver coils) and a rotor part (with six rectangular metal sheets). The receiver coil was designed based on the differential principle, which eliminates the effect of the excitation coil on the induced voltage of the receiver coil, and essentially decouples the excitation field from the eddy current field. Moreover, the induced voltages in the three receiver coils are three-phase sinusoidal signals with a phase difference of 10°, which are linearized by CLARK transformation. To minimize the sensor non-linearity, the Plackett-Burman technique was used, which identified the stator radius and the rotor blade thickness as the key factors affecting the sensor linearity. Then, the particle swarm algorithm with decreasing inertia weights was utilized to optimize the sensor linearity. A sensor prototype was made and tested in the laboratory, where the experimental results showed that the sensor non-linearity was only 0.648% and 0.645% in the clockwise and counterclockwise directions, respectively. Notably, the non-linearity of the sensor was less than -0.696% at different speeds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app