Add like
Add dislike
Add to saved papers

The Study on Single-Event Effects and Hardening Analysis of Frequency Divider Circuits Based on InP HBT Process.

Micromachines 2024 April 16
The single-event effects (SEEs) of frequency divider circuits and the radiation tolerance of the hardened circuit are studied in this paper. Based on the experimental results of SEEs in InP HBTs, a transient current model for sensitive transistors is established, taking into account the influence of factors such as laser energy, base-collector junction voltage, and radiation position. Moreover, the SEEs of the (2:1) static frequency divider circuit with the InP DHBT process are simulated under different laser energies by adding the transient current model at sensitive nodes. The effect of the time relationship between the pulsed laser and clock signal are discussed. Changes in differential output voltage and the degradation mechanism of unhardened circuits are analyzed, which are mainly attributed to the cross-coupling effect between the transistors in the differential pair. Furthermore, the inverted output is directly connected to the input, leading to a feedback loop and causing significant logic upsets. Finally, an effective hardened method is proposed to provide redundancy and mitigate the impacts of SEEs on the divider. The simulation results demonstrate a notable improvement in the radiation tolerance of the divider.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app