Add like
Add dislike
Add to saved papers

Drought-induced circular RNAs in maize roots: separating signal from noise.

Plant Physiology 2024 April 27
Circular RNAs (CircRNAs) play an important role in diverse biological processes; however, their origin and functions, especially in plants, remain largely unclear. Here, we used two maize (Zea mays) inbred lines, as well as 14 of their derivative RILs with different drought sensitivity, to systematically characterize 8,790 circRNAs in maize roots under well-watered (WW) and water-stress (WS) conditions. We found that a diverse set of circRNAs expressed at significantly higher levels under WS. Enhanced expression of circRNAs was associated with longer flanking introns and an enrichment of long interspersed nuclear element (LINE) retrotransposable elements. The epigenetic marks found at the back-splicing junctions of circRNA-producing genes were markedly different from canonical splicing, characterized by increased levels of H3K36me3/H3K4me1, as well as decreased levels of H3K9Ac/H3K27Ac. We found that genes expressing circRNAs are subject to relaxed selection. The significant enrichment of trait-associated sites along their genic regions suggested that genes giving rise to circRNAs were associated with plant survival rate under drought stress, implying that circRNAs play roles in plant drought responses. Furthermore, we found that overexpression of circMED16, one of the drought-responsive circRNAs, enhances drought tolerance in Arabidopsis (Arabidopsis thaliana). Our results provide a framework for understanding the intricate interplay of epigenetic modifications and how they contribute to the fine-tuning of circRNA expression under drought stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app