Add like
Add dislike
Add to saved papers

New Pyridyl and Dihydroisoquinoline Alkaloids Isolated from the Chevron Nemertean Amphiporus angulatus .

Marine Drugs 2024 March 23
Nemertean worms contain toxins that are used to paralyze their prey and to deter potential predators. Hoplonemerteans often contain pyridyl alkaloids like anabaseine that act through nicotinic acetylcholine receptors and crustacean chemoreceptors. The chemical reactivity of anabaseine, the first nemertean alkaloid to be identified, has been exploited to make drug candidates selective for alpha7 subtype nAChRs. GTS-21, a drug candidate based on the anabaseine scaffold, has pro-cognitive and anti-inflammatory actions in animal models. The circumpolar chevron hoplonemertean Amphiporus angulatus contains a multitude of pyridyl compounds with neurotoxic, anti-feeding, and anti-fouling activities. Here, we report the isolation and structural identification of five new compounds, doubling the number of pyridyl alkaloids known to occur in this species. One compound is an isomer of the tobacco alkaloid anatabine, another is a unique dihydroisoquinoline, and three are analogs of the tetrapyridyl nemertelline. The structural characteristics of these ten compounds suggest several possible pathways for their biosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app