Add like
Add dislike
Add to saved papers

Lung behavior during a staircase high-frequency oscillatory ventilation recruitment maneuver.

BACKGROUND: Lung volume optimization maneuvers (LVOM) are necessary to make physiologic use of high-frequency oscillatory ventilation (HFOV), but lung behavior during such maneuvers has not been studied to determine lung volume changes after initiation of HFOV, to quantify recruitment versus derecruitment during the LVOM and to calculate the time to stabilization after a pressure change.

METHODS: We performed a secondary analysis of prospectively collected data in subjects < 18 years on HFOV. Uncalibrated respiratory inductance plethysmography (RIP) tracings were used to quantify lung recruitment and derecruitment during the LVOM inflation and deflation. The time constant was calculated according to the Niemann model.

RESULTS: RIP data of 51 subjects (median age 3.5 [1.7-13.3] months) with moderate-to-severe pediatric acute respiratory distress syndrome (PARDS) in 85.4% were analyzed. Lung recruitment and derecruitment occurred during the LVOM inflation phase upon start of HFOV and between and within pressure changes. At 90% of maximum inflation pressure, lung derecruitment already started during the deflation phase. Time to stable lung volume (time constant) could only be calculated in 26.2% of all pressure changes during the inflation and in 21.4% during the deflation phase, independent of continuous distending pressure (CDP). Inability to calculate the time constant was due to lack of stabilization of the RIP signal or no change in any direction.

CONCLUSIONS: Significant heterogeneity in lung behavior during a staircase incremental-decremental LVOM occurred, underscoring the need for higher initial inflation pressures when transitioning from conventional mechanical ventilation (CMV) and a longer time between pressure changes to allow for equilibration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app