Add like
Add dislike
Add to saved papers

Enhanced photocatalytic performance of ZnO under visible light by co-doping of Ta and C using hydrothermal method.

RSC Advances 2024 April 17
This study attempted to improve the photocatalytic activity of zinc oxide (ZnO) semiconductors in the visible light region by introducing the co-doping of carbon (C) and tantalum (Ta) to ZnO (ZTC) using a simple hydrothermal method with the respective precursors. The obtained uniform ZTC nanoparticles with an average crystal size of 29.30 nm (according to Scherrer's equation) revealed a redshift with a decrease in bandgap ( E g ) from 3.04 eV to 2.88 eV, allowing the obtained photocatalyst to absorb the energy of the visible light for photocatalysis. Furthermore, the Zn 2p and Ta 4f core level spectra confirmed the presence of Zn2+ and Ta5+ in the ZTC sample. In addition, the infrared spectra identified hydrogen-related defects (HRDs), while the O 1s spectra indicated the existence of oxygen vacancies ( V O ). Electrochemical tests revealed improvement in the electron conductivity and charge separation of the obtained materials. To follow, the photocatalytic performance assessment was conducted by varying the C/Zn2+ ratios (5, 10, and 15 mol%) in ZTC samples, the initial RhB concentration (7, 15, and 30 ppm), and the pH of the RhB solution (3.0-10.0). The photodegradation on ZTC samples showed the most effectiveness for a 7 ppm RhB solution with a C/Zn2+ ratio of 10 mol% in the slightly alkaline medium (pH 9.0). Additionally, ZTC also exhibited commendable durability after being reused several times. The nature of RhB photodegradation was proposed and discussed via a mechanism at the end of this work.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app