Add like
Add dislike
Add to saved papers

Both partial inactivation as well as activation of NF-κB signaling lead to hypertension and chronic kidney disease.

BACKGROUND AND HYPOTHESIS: Activation of NF-κB-signalling is key in the pathogenesis of chronic kidney diseases (CKD). However, a certain level of NF-κB activity is necessary to enable tissue repair.

METHODS: To investigate the relationship between activated and inactivated NF-κB signaling on the pathogenesis of CKD using mouse models of NF-κB partial inactivation (mutating cysteine at position 59 of the sixth exon on the NF-κB gene into alanine) and activation (mutating cysteine at position 59 of the sixth exon on the NF-κB gene into serine).

RESULTS: The density of CD3, CD8, CD68 positive cells, as well as the expression of IL-6, TRAF-1, and NAF-1 in the kidney tissues of NF-κBC59A mice were reduced, whereas an opposing pattern was observed in the NF-κBC59S mice. Blood pressure, kidney fibrosis (analyzed by PAS-, Masson trichrome-, and Sirius-Red-staining as well as α-SMA immunofluorescence), serum creatinine and urinary albumin-to-creatinine-ratio are markedly increased in NF-κB activated and inactivated mice compared to controls. Transmission electron microscopy indicated that the glomerular basement membrane was thicker in both NF-κBC59A and NF-κBC59S mice compared to wild-type mice.

CONCLUSIONS: Using mice models with partially activated and inactivated NF-κB pathways suggests that there is an apparently U-shaped relationship between blood pressure, kidney function as well as morphology and the activation of the NF-κB pathway. A certain optimal activity of the NF-κB pathway seems to be important to maintain optimal kidney function and morphology.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app