Add like
Add dislike
Add to saved papers

Enhancing Antimicrobial Efficacy and Synergistic Effects of Nano-Silica-Based Combinations With Doxycycline, Metronidazole, and Ciprofloxacin Against Enterococcus faecalis Biofilms.

Curēus 2024 Februrary
BACKGROUND:   Enterococcus faecalis  biofilm formation within root canals poses a challenging problem in endodontics, often leading to treatment failure. To combat this issue, nanotechnology offers a promising avenue for enhancing antimicrobial efficacy. This study explores the potential synergistic effects of combining nanoscale silica particles with conventional antibiotics, including doxycycline, metronidazole, and ciprofloxacin, against E. faecalis biofilms. The unique characteristics of silica nanoparticles, such as their increased reactivity and ability to be functionalized with other compounds, make them ideal candidates for augmenting antibiotic efficacy. This research investigates the antimicrobial properties of these silica-based combinations and their potential to eliminate or inhibit E. faecalis biofilms more effectively than conventional treatments.  Methodology: The methods involved the preparation of nanostructured silica particles and their combination with doxycycline, Flagyl, and ciprofloxacin at subinhibitory concentrations. These combinations were then tested against E. faecalis biofilms using the agar well diffusion technique.

RESULTS: Preliminary results suggested that the synergistic interactions between silica nanoparticles and antibiotics can significantly enhance antimicrobial efficacy. The combined treatment exhibited superior inhibitory effects on E. faecalis compared to antibiotics or silica nanoparticles alone ( P  < 0.05).  Conclusions: This study sheds light on the potential of nanoscale silica-based combinations to address the challenges posed by E. faecalis biofilms in endodontics. Understanding the mechanisms of synergy between nanoparticles and antibiotics can pave the way for the development of more effective and targeted strategies for root canal disinfection, ultimately improving the success rates of endodontic treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app