Add like
Add dislike
Add to saved papers

Predicted effectiveness of EnChroma multi-notch filters for enhancing color perception in anomalous trichromats.

Vision Research 2024 March 24
EnChroma filters are aids designed to improve color vision for anomalous trichromats. Their use is controversial because the results of lab-based assessments of their effectiveness have so far largely failed to agree with positive anecdotal reports. However, the effectiveness of EnChroma filters will vary depending on the conditions of viewing, including whether the stimuli are broadband reflective surfaces or colors presented on RGB displays, whether illumination spectra are broadband or narrowband, the transmission spectra of particular filters, and the cone spectral sensitivity functions of the observer. We created a model of anomalous trichromatic color vision to predict the effects of EnChroma filters on the color signals impaired in anomalous trichromacy. Using the model we varied illumination, filter type and observer cone sensitivity functions, and tested the effect of presenting colors as broadband reflective surfaces or on RGB displays. We also used hyperspectral images to assess the impact of the filters on anomalous trichromats' color vision for natural scenes. Model results predicted that the filters should be broadly effective at enhancing anomalous trichromats' equivalent to L/(L + M) chromatic contrasts under a range of viewing conditions, but are substantially more effective for deuteranomals than for protanomals. The filters are predicted to be more effective for broadband reflective surfaces presented under broadband illuminants than for surfaces presented under narrowband illuminants or for colors presented on RGB displays. Since the potential impacts of contrast adaptation and perceptual learning are not considered in the model, it needs to be empirically validated. Results of empirical tests of the effects of EnChroma filters on deuteranomalous color vision in comparison with model predictions are presented in an accompanying paper (Somers et al., in prep.).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app