Journal Article
Review
Add like
Add dislike
Add to saved papers

Path analysis to identify factors influencing osteoporosis: A cross-sectional study.

BACKGROUND: Osteoporosis is characterized by low bone mass and deterioration of bone tissue, which is influenced by both environmental factors and nutritional metabolism. The relationship between biochemical indicators and bone mineral density (BMD) is intricate and involves complex mechanisms. Path analysis, a statistical method that investigates causal relationships and the strength of associations among multiple factors, can be valuable in elucidating the connection between biochemical indicators and BMD.

METHODS: In this study, we employed advanced statistical techniques, specifically structural equation modeling (SEM) to investigate the intricate interrelationships among a myriad of factors that exert influence on BMD. This analytical approach facilitated not only the identification of the direct relationships between specific variables and BMD but also the exploration of the intricate of indirect pathway through which other variables contribute to the oval impact on BMD. By delving into the direct and indirect effects, we aimed to unravel the complex influences that collectively shape the state of bone health, providing a nuanced understanding of the multifaceted nature of the factors affecting BMD.

RESULTS: Our findings revealed that lipid levels had a significant indirect influence on BMD, which was mediated by body mass index (BMI). BMI exhibited both direct and indirect effects on BMD. Uric acid (UA) exerted a significant direct and indirect influence on BMD, with glomerular filtration rate (GFR) acting as the mediator. However, the total effect of UA on BMD was not significant due to the cancellation of positive effect UA on BMD but negative indirect effects of UA through GFR. For females, albumin had a significant direct effect on BMD, whereas this effect was not observed in males. The path analysis models generated results that demonstrated an acceptable fit for both female data (χ2 = 9.63, df = 7, p = 0.21, comparative fit index (CFI) = 0.98, root mean square error of approximation (RMSEA) = 0.05) and male data (χ2 = 6.26, df = 4, p = 0.18, CFI = 0.97, RMSEA = 0.06).

CONCLUSIONS: Nutritional metabolism plays a crucial role in maintaining BMD in elderly females and males.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app