Add like
Add dislike
Add to saved papers

Prediction of coronary artery lesions in children with Kawasaki syndrome based on machine learning.

BMC Pediatrics 2024 March 6
OBJECTIVE: Kawasaki syndrome (KS) is an acute vasculitis that affects children < 5 years of age and leads to coronary artery lesions (CAL) in about 20-25% of untreated cases. Machine learning (ML) is a branch of artificial intelligence (AI) that integrates complex data sets on a large scale and uses huge data to predict future events. The purpose of the present study was to use ML to present the model for early risk assessment of CAL in children with KS by different algorithms.

METHODS: A total of 158 children were enrolled from Women and Children's Hospital, Qingdao University, and divided into 70-30% as the training sets and the test sets for modeling and validation studies. There are several classifiers are constructed for models including the random forest (RF), the logistic regression (LR), and the eXtreme Gradient Boosting (XGBoost). Data preprocessing is analyzed before applying the classifiers to modeling. To avoid the problem of overfitting, the 5-fold cross validation method was used throughout all the data.

RESULTS: The area under the curve (AUC) of the RF model was 0.925 according to the validation of the test set. The average accuracy was 0.930 (95% CI, 0.905 to 0.956). The AUC of the LG model was 0.888 and the average accuracy was 0.893 (95% CI, 0,837 to 0.950). The AUC of the XGBoost model was 0.879 and the average accuracy was 0.935 (95% CI, 0.891 to 0.980).

CONCLUSION: The RF algorithm was used in the present study to construct a prediction model for CAL effectively, with an accuracy of 0.930 and AUC of 0.925. The novel model established by ML may help guide clinicians in the initial decision to make a more aggressive initial anti-inflammatory therapy. Due to the limitations of external validation and regional population characteristics, additional research is required to initiate a further application in the clinic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app