Add like
Add dislike
Add to saved papers

From sequences to therapeutics: Using machine learning to predict chemically modified siRNA activity.

Genomics 2024 Februrary 30
Small interfering RNAs (siRNAs) exemplify the promise of genetic medicine in the discovery of novel therapeutic modalities. Their ability to selectively suppress gene expression makes them ideal candidates for the development of oligonucleotide pharmaceuticals. Recent advancements in machine learning (ML) have facilitated the design of unmodified siRNA and efficacy prediction. However, a model trained to predict the silencing activity of siRNAs with diverse chemical modification patterns is yet to be published despite the importance of such modifications in designing siRNAs with the potential to reach the level of clinical use. This study presents the first application of ML to efficiently classify chemically modified siRNAs on the basis of sequence and chemical modification patterns alone. Three algorithms were evaluated at three classification thresholds and compared according to sensitivity, specificity, consistency of feature weights with empirical knowledge, and performance using an external validation dataset. Finally, possible directions for future research were proposed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app