Add like
Add dislike
Add to saved papers

Analytical Performance Specifications for Input Variables: Investigation of the Model of End-Stage Liver Disease.

Clinical Chemistry 2024 Februrary 29
BACKGROUND: Artificial intelligence models constitute specific uses of analysis results and, therefore, necessitate evaluation of analytical performance specifications (APS) for this context specifically. The Model of End-stage Liver Disease (MELD) is a clinical prediction model based on measurements of bilirubin, creatinine, and the international normalized ratio (INR). This study evaluates the propagation of error through the MELD, to inform choice of APS for the MELD input variables.

METHODS: A total of 6093 consecutive MELD scores and underlying analysis results were retrospectively collected. "Desirable analytical variation" based on biological variation as well as current local analytical variation was simulated onto the data set as well as onto a constructed data set, representing a worst-case scenario. Resulting changes in MELD score and risk classification were calculated.

RESULTS: Biological variation-based APS in the worst-case scenario resulted in 3.26% of scores changing by ≥1 MELD point. In the patient-derived data set, the same variation resulted in 0.92% of samples changing by ≥1 MELD point, and 5.5% of samples changing risk category. Local analytical performance resulted in lower reclassification rates.

CONCLUSIONS: Error propagation through MELD is complex and includes population-dependent mechanisms. Biological variation-derived APS were acceptable for all uses of the MELD score. Other combinations of APS can yield equally acceptable results. This analysis exemplifies how error propagation through artificial intelligence models can become highly complex. This complexity will necessitate that both model suppliers and clinical laboratories address analytical performance specifications for the specific use case, as these may differ from performance specifications for traditional use of the analyses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app