Add like
Add dislike
Add to saved papers

Ergodicity Breaking and Deviation from Eigenstate Thermalization in Relativistic Quantum Field Theory.

Physical Review Letters 2024 January 13
The validity of the ergodic hypothesis in quantum systems can be rephrased in the form of the eigenstate thermalization hypothesis (ETH), a set of statistical properties for the matrix elements of local observables in energy eigenstates, which is expected to hold in any ergodic system. We test the ETH in a nonintegrable model of relativistic quantum field theory (QFT) using the numerical method of Hamiltonian truncation in combination with analytical arguments based on Lorentz symmetry and renormalization group theory. We find that there is an infinite sequence of eigenstates with the characteristics of quantum many-body scars-that is, exceptional eigenstates with observable expectation values that lie far from thermal values-and we show that these states are one-quasiparticle states. We argue that in the thermodynamic limit the eigenstates cover the entire area between two diverging lines: the line of one-quasiparticle states, whose direction is dictated by relativistic kinematics, and the thermal average line. Our results suggest that the strong version of the ETH is violated in any relativistic QFT whose spectrum admits a quasiparticle description.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app