Add like
Add dislike
Add to saved papers

Identification and validation of pyroptosis-related genes as potential biomarkers for hypertrophic cardiomyopathy: A comprehensive bioinformatics analysis.

Medicine (Baltimore) 2024 January 27
Pyroptosis plays a key role in the death of cells including cardiomyocytes, and it is associated with a variety of cardiovascular diseases. However, the role of pyroptosis-related genes (PRGs) in hypertrophic cardiomyopathy (HCM) is not well characterized. This study aimed to identify key biomarkers and explore the molecular mechanisms underlying the functions of the PRGs in HCM. The differentially expressed genes were identified by GEO2R, and the differentially expressed pyroptosis-related genes (DEPRGs) of HCM were identified by combining with PRGs. Enrichment analysis was performed using the "clusterProfiler" package of the R software. Protein-protein interactions (PPI) network analysis was performed using the STRING database, and hub genes were screened using cytoHubba. TF-miRNA coregulatory networks and protein-chemical interactions were analyzed using NetworkAnalyst. RT-PCR/WB was used for expression validation of HCM diagnostic markers. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to measure and compare the expression of the identified genes in the cardiac hypertrophy model and the control group. A total of 20 DEPRGs were identified, which primarily showed enrichment for the positive regulation of cytokine production, regulation of response to biotic stimulus, tumor necrosis factor production, and other biological processes. These processes primarily involved pathways related to Renin-angiotensin system, Adipocytokine signaling pathway and NF-kappa B signaling pathway. Then, a PPI network was constructed, and 8 hub genes were identified. After verification analysis, the finally identified HCM-related diagnostic markers were upregulated gene protein tyrosine phosphatase non-receptor type 11 (PTPN11), downregulated genes interleukin-1 receptor-associated kinase 3 (IRAK3), and annexin A2 (ANXA2). Further GSEA analysis revealed these 3 biomarkers primarily related to cardiac muscle contraction, hypertrophic cardiomyopathy, fatty acid degradation and ECM - receptor interaction. Moreover, we also elucidated the interaction network of these biomarkers with the miRNA network and known compounds, respectively. RT-PCR/WB results indicated that PTPN11 expression was significantly increased, and IRAK3 and ANXA2 expressions were significantly decreased in HCM. This study identified PTPN11, IRAK3, and ANXA2 as pyroptosis-associated biomarkers of HCM, with the potential to reveal the development and pathogenesis of HCM and could be potential therapeutic targets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app