Add like
Add dislike
Add to saved papers

Lower levels of soluble β-amyloid precursor protein, but not β-amyloid, in the frontal cortex in schizophrenia.

Psychiatry Research 2023 December 4
We identified a sub-group (25%) of people with schizophrenia (muscarinic receptor deficit schizophrenia (MRDS)) that are characterised because of markedly lower levels of cortical muscarinic M1 receptors (CHRM1) compared to most people with the disorder (non-MRDS). Notably, bioinformatic analyses of our cortical gene expression data shows a disturbance in the homeostasis of a biochemical pathway that regulates levels of CHRM1. A step in this pathway is the processing of β-amyloid precursor protein (APP) and therefore we postulated there would be altered levels of APP in the frontal cortex from people with MRDS. Here we measure levels of CHRM1 using [3 H]pirenzepine binding, soluble APP (sAPP) using Western blotting and amyloid beta peptides (Aβ1-40 and Aβ1-42) using ELISA in the frontal cortex (Brodmann's area 6: BA 6; MRDS = 14, non-MRDS = 14, controls = 14). We confirmed the MRDS cohort in this study had the expected low levels of [3 H]pirenzepine binding. In addition, we showed that people with schizophrenia, independent of their sub-group status, had lower levels of sAPP compared to controls but did not have altered levels of Aβ1-40 or Aβ1-42. In conclusion, whilst changes in sAPP are not restricted to MRDS our data could indicate a role of APP, which is important in axonal and synaptic pruning, in the molecular pathology of the syndrome of schizophrenia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app