Add like
Add dislike
Add to saved papers

Template assisted lithium superoxide growth for lithium-oxygen batteries.

Faraday Discussions 2023 October 5
Developing batteries with energy densities comparable to internal combustion technology is essential for a worldwide transition to electrified transportation. Li-O2 batteries are seen as the 'holy grail' of battery technologies since they have the highest theoretical energy density of all battery technologies. Current lithium-oxygen (Li-O2 ) batteries suffer from large charge overpotentials related to the electronic resistivity of the insulating lithium peroxide (Li2 O2 ) discharge product. One potential solution is the formation and stabilization of a lithium superoxide (LiO2 ) discharge intermediate that exhibits good electronic conductivity. However, LiO2 is reported to be unstable at ambient temperature despite its favorable formation energy at -1.0 eV per atom. In this paper - based on our recent work on the development of cathode materials for aprotic lithium oxygen batteries including two intermetallic compounds, LiIr3 and LiIr, that are found to form good template interfaces with LiO2 - a simple goodness of fit R factor to gauge how well a template surface structure can support LiO2 growth, is developed. The R factor is a quantitative measurement to calculate the geometric difference in the unit cells of specific Miller Index 2D planes of the template surface and LiO2 . Using this as a guide, the R factors for LiIr3 , LiIr, and La2 NiO4+ δ , are found to be good. This guide is attested by simple extension to other noble metal intermetallics with electrochemical cycling data including LiRh3 , LiRh, and Li2 Pd. Finally, the template concept is extended to main group elements and the R factors for LiO2 (111) and Li2 Ca suggest that Li2 Ca is a possible candidate for the template assisted LiO2 growth strategy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app