Add like
Add dislike
Add to saved papers

Enzymatic kinetics of photosystem II with DCBQ as a substrate in extended Michaelis-Menten model.

This study aimed to examine enzymatic kinetics of photosystem II (PSII) of maize mesophyll chloroplasts using the artificial electron acceptor 2,6-dichloro-1,4-benzoquinone (DCBQ) as a substrate. We extended Michealis-Menten kinetics model assuming that DCBQ can accept electrons from PSII in two ways: from a QB directly or from QA by docking in the QB site. We used a Clark oxygen electrode for measuring the PSII activity, depending on the concentration of DCBQ. We found that: [1] DCBQ acts as an electron acceptor or [2] as an inhibitor for PSII. At a concentration < 0.2 mM, DCBQ accepted electrons from the QB at a rate of 889 electrons/s, while at >> 0.2 mM it replaced QB following which the activity decreased to zero. DCBQ located in the QB also increased the affinity of the substrate to PSII. We determined the kinetic parameters for the chloroplasts of plants growing under high and low light intensity, to change thylakoid stacking and thus the rate of electron transport. The parameter Km B , which is a measure of the affinity of DCBQ to PSII, showed quantitative changes based on light intensity, while K was proportional to the size of the plastoquinone pool. We believe that our model can be applied as a tool to study "State transitions" and induced changes in grana stacking in plants exposed to various stresses, which will facilitate the regulation of electron transfer pathways through an appropriate balance between linear and cyclic electron transport.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app