Add like
Add dislike
Add to saved papers

Hypomethylation of CD3D promoter induces immune cell infiltration and supports malignant phenotypes in uveal melanoma.

Alterations in DNA methylation in malignant diseases have been heralded as promising targets for diagnostic, prognostic, and predictive values. This study was based on epigenetic alterations and immune cell infiltration analysis to investigate the mechanism of CD3D methylation in uveal melanoma (UM). Bioinformatics analysis was performed on transcriptome data, 450 K methylation data, and clinical information of UM patients from the TCGA database. Stromal and immune cell infiltration was evaluated by calculating the StromalScore and ImmuneScore of UM samples. UM samples were divided into high and low StromalScore and ImmuneScore groups, followed by differential and enrichment analyses. PPI network construction and correlation analysis was used to identify the core prognosis-related genes. The bioinformatics analysis results were confirmed in UM cell experiments. StromalScore and ImmuneScore were significantly associated with the prognosis of UM patients. CD3D, IRF1, CCL3, and FN1 were identified as core genes driven by methylation that affected the prognosis of UM patients. CD3D expression showed the highest correlation with its methylation and was closely related to the four key immune cells in UM development. CD3D was hypomethylated and abundantly expressed in UM cells, while silencing of CD3D inhibited the proliferation, migration, and invasion of UM cells in vitro. In summary, this study identifies hypomethylation of CD3D promoter in UM, which was associated with immune cell infiltration of UM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app