Journal Article
Review
Add like
Add dislike
Add to saved papers

Mechanisms of PARP-Inhibitor-Resistance in BRCA-Mutated Breast Cancer and New Therapeutic Approaches.

Cancers 2023 July 17
The recent success of Poly (ADP-ribose) polymerase (PARP) inhibitors has led to the approval of four different PARP inhibitors for the treatment of BRCA1/2-mutant breast and ovarian cancers. About 40-50% of BRCA1/2-mutated patients do not respond to PARP inhibitors due to a preexisting innate or intrinsic resistance; the majority of patients who initially respond to the therapy inevitably develop acquired resistance. However, subsets of patients experience a long-term response (>2 years) to treatment with PARP inhibitors. Poly (ADP-ribose) polymerase 1 (PARP1) is an enzyme that plays an important role in the recognition and repair of DNA damage. PARP inhibitors induce "synthetic lethality" in patients with tumors with a homologous-recombination-deficiency (HRD). Several molecular mechanisms have been identified as causing PARP-inhibitor-resistance. In this review, we focus on the molecular mechanisms underlying the PARP-inhibitor-resistance in BRCA-mutated breast cancer and summarize potential therapeutic strategies to overcome the resistance mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app