Add like
Add dislike
Add to saved papers

Epilepsy diagnosis using a clinical decision tool and artificially intelligent electroencephalography.

OBJECTIVE: To construct a tool for non-experts to calculate the probability of epilepsy based on easily obtained clinical information combined with an artificial intelligence readout of the electroencephalogram (AI-EEG).

MATERIALS AND METHODS: We performed a chart review of 205 consecutive patients aged 18 years or older who underwent routine EEG. We created a point system to calculate the pre-EEG probability of epilepsy in a pilot study cohort. We also computed a post-test probability based on AI-EEG results.

RESULTS: One hundred and four (50.7%) patients were female, the mean age was 46 years, and 110 (53.7%) were diagnosed with epilepsy. Findings favoring epilepsy included developmental delay (12.6% vs 1.1%), prior neurological injury (51.4% vs 30.9%), childhood febrile seizures (4.6% vs 0.0%), postictal confusion (43.6% vs 20.0%), and witnessed convulsions (63.6% vs 21.1%); findings favoring alternative diagnoses were lightheadedness (3.6% vs 15.8%) or onset after prolonged sitting or standing (0.9% vs 7.4%). The final point system included 6 predictors: Presyncope (-3 points), cardiac history (-1), convulsion or forced head turn (+3), neurological disease history (+2), multiple prior spells (+1), postictal confusion (+2). Total scores of ≤1 point predicted <5% probability of epilepsy, while cumulative scores ≥7 predicted >95%. The model showed excellent discrimination (AUROC: 0.86). A positive AI-EEG substantially increases the probability of epilepsy. The impact is greatest when the pre-EEG probability is near 30%.

SIGNIFICANCE: A decision tool using a small number of historical clinical features accurately predicts the probability of epilepsy. In indeterminate cases, AI-assisted EEG helps resolve uncertainty. This tool holds promise for use by healthcare workers without specialty epilepsy training if validated in an independent cohort.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app