Epilepsy diagnosis using a clinical decision tool and artificially intelligent electroencephalography.
Epilepsy & Behavior : E&B 2023 March 4
OBJECTIVE: To construct a tool for non-experts to calculate the probability of epilepsy based on easily obtained clinical information combined with an artificial intelligence readout of the electroencephalogram (AI-EEG).
MATERIALS AND METHODS: We performed a chart review of 205 consecutive patients aged 18 years or older who underwent routine EEG. We created a point system to calculate the pre-EEG probability of epilepsy in a pilot study cohort. We also computed a post-test probability based on AI-EEG results.
RESULTS: One hundred and four (50.7%) patients were female, the mean age was 46 years, and 110 (53.7%) were diagnosed with epilepsy. Findings favoring epilepsy included developmental delay (12.6% vs 1.1%), prior neurological injury (51.4% vs 30.9%), childhood febrile seizures (4.6% vs 0.0%), postictal confusion (43.6% vs 20.0%), and witnessed convulsions (63.6% vs 21.1%); findings favoring alternative diagnoses were lightheadedness (3.6% vs 15.8%) or onset after prolonged sitting or standing (0.9% vs 7.4%). The final point system included 6 predictors: Presyncope (-3 points), cardiac history (-1), convulsion or forced head turn (+3), neurological disease history (+2), multiple prior spells (+1), postictal confusion (+2). Total scores of ≤1 point predicted <5% probability of epilepsy, while cumulative scores ≥7 predicted >95%. The model showed excellent discrimination (AUROC: 0.86). A positive AI-EEG substantially increases the probability of epilepsy. The impact is greatest when the pre-EEG probability is near 30%.
SIGNIFICANCE: A decision tool using a small number of historical clinical features accurately predicts the probability of epilepsy. In indeterminate cases, AI-assisted EEG helps resolve uncertainty. This tool holds promise for use by healthcare workers without specialty epilepsy training if validated in an independent cohort.
MATERIALS AND METHODS: We performed a chart review of 205 consecutive patients aged 18 years or older who underwent routine EEG. We created a point system to calculate the pre-EEG probability of epilepsy in a pilot study cohort. We also computed a post-test probability based on AI-EEG results.
RESULTS: One hundred and four (50.7%) patients were female, the mean age was 46 years, and 110 (53.7%) were diagnosed with epilepsy. Findings favoring epilepsy included developmental delay (12.6% vs 1.1%), prior neurological injury (51.4% vs 30.9%), childhood febrile seizures (4.6% vs 0.0%), postictal confusion (43.6% vs 20.0%), and witnessed convulsions (63.6% vs 21.1%); findings favoring alternative diagnoses were lightheadedness (3.6% vs 15.8%) or onset after prolonged sitting or standing (0.9% vs 7.4%). The final point system included 6 predictors: Presyncope (-3 points), cardiac history (-1), convulsion or forced head turn (+3), neurological disease history (+2), multiple prior spells (+1), postictal confusion (+2). Total scores of ≤1 point predicted <5% probability of epilepsy, while cumulative scores ≥7 predicted >95%. The model showed excellent discrimination (AUROC: 0.86). A positive AI-EEG substantially increases the probability of epilepsy. The impact is greatest when the pre-EEG probability is near 30%.
SIGNIFICANCE: A decision tool using a small number of historical clinical features accurately predicts the probability of epilepsy. In indeterminate cases, AI-assisted EEG helps resolve uncertainty. This tool holds promise for use by healthcare workers without specialty epilepsy training if validated in an independent cohort.
Full text links
Trending Papers
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app