Respiratory viruses and postoperative hemodynamics in patients with unrestrictive congenital cardiac communications: a prospective cohort study.
European Journal of Medical Research 2023 January 21
BACKGROUND: Pulmonary vascular abnormalities pose a risk for severe life-threatening hemodynamic disturbances following surgical repair of congenital cardiac communications (CCCs ). In the distal lung, small airways and vessels share a common microenvironment, where biological crosstalks take place. Because respiratory cells infected by viruses express a number of molecules with potential impact on airway and vascular remodeling, we decided to test the hypothesis that CCC patients carrying viral genomes in the airways might be at a higher risk for pulmonary (and systemic) hemodynamic disturbances postoperatively.
METHODS: Sixty patients were prospectively enrolled (age 11 [7-16] months, median with interquartile range). Preoperative pulmonary/systemic mean arterial pressure ratio (PAP/SAP) was 0.78 (0.63-0.88). The presence or absence of genetic material for respiratory viruses in nasopharyngeal and tracheal aspirates was investigated preoperatively in the absence of respiratory symptoms using real-time polymerase chain reaction (kit for detection of 19 pathogens). Post-cardiopulmonary bypass (CPB) inflammatory reaction was analyzed by measuring serum levels of 36 inflammatory proteins (immunoblotting) 4 h after its termination. Postoperative hemodynamics was assessed using continuous recording of PAP and SAP with calculation of PAP/SAP ratio.
RESULTS: Viral genomes were detected in nasopharynx and the trachea in 64% and 38% of patients, respectively. Rhinovirus was the most prevalent agent. The presence of viral genomes in the trachea was associated with an upward shift of postoperative PAP curve (p = 0.011) with a PAP/SAP of 0.44 (0.36-0.50) in patients who were positive versus 0.34 (0.30-0.45) in those who were negative (p = 0.008). The presence or absence of viral genomes in nasopharynx did not help predict postoperative hemodynamics. Postoperative PAP/SAP was positively correlated with post-CPB levels of interleukin-1 receptor antagonist (p = 0.026), macrophage migration inhibitory factor (p = 0.019) and monocyte chemoattractant protein-1 (p = 0.031), particularly in patients with virus-positive tracheal aspirates.
CONCLUSIONS: Patients with CCCs carrying respiratory viral genomes in lower airways are at a higher risk for postoperative pulmonary hypertension, thus deserving special attention and care. Preoperative exposure to respiratory viruses and post-CPB inflammatory reaction seem to play a combined role in determining the postoperative behavior of the pulmonary circulation.
METHODS: Sixty patients were prospectively enrolled (age 11 [7-16] months, median with interquartile range). Preoperative pulmonary/systemic mean arterial pressure ratio (PAP/SAP) was 0.78 (0.63-0.88). The presence or absence of genetic material for respiratory viruses in nasopharyngeal and tracheal aspirates was investigated preoperatively in the absence of respiratory symptoms using real-time polymerase chain reaction (kit for detection of 19 pathogens). Post-cardiopulmonary bypass (CPB) inflammatory reaction was analyzed by measuring serum levels of 36 inflammatory proteins (immunoblotting) 4 h after its termination. Postoperative hemodynamics was assessed using continuous recording of PAP and SAP with calculation of PAP/SAP ratio.
RESULTS: Viral genomes were detected in nasopharynx and the trachea in 64% and 38% of patients, respectively. Rhinovirus was the most prevalent agent. The presence of viral genomes in the trachea was associated with an upward shift of postoperative PAP curve (p = 0.011) with a PAP/SAP of 0.44 (0.36-0.50) in patients who were positive versus 0.34 (0.30-0.45) in those who were negative (p = 0.008). The presence or absence of viral genomes in nasopharynx did not help predict postoperative hemodynamics. Postoperative PAP/SAP was positively correlated with post-CPB levels of interleukin-1 receptor antagonist (p = 0.026), macrophage migration inhibitory factor (p = 0.019) and monocyte chemoattractant protein-1 (p = 0.031), particularly in patients with virus-positive tracheal aspirates.
CONCLUSIONS: Patients with CCCs carrying respiratory viral genomes in lower airways are at a higher risk for postoperative pulmonary hypertension, thus deserving special attention and care. Preoperative exposure to respiratory viruses and post-CPB inflammatory reaction seem to play a combined role in determining the postoperative behavior of the pulmonary circulation.
Full text links
Trending Papers
Bacteremia with gram positive bacteria - when and how do I need to look for endocarditis?Clinical Microbiology and Infection 2023 August 32
Abdominal wall closure.British Journal of Surgery 2023 September 16
Antireflux surgery versus antireflux medication and risk of esophageal adenocarcinoma in patients with Barrett's esophagus.Gastroenterology 2023 September 9
Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement.Nature Reviews. Endocrinology 2023 September 6
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app