Add like
Add dislike
Add to saved papers

Cardiovascular and renal profiles in rat offspring that do not undergo catch-up growth after exposure to maternal protein restriction.

Maternal protein restriction is often associated with structural and functional sequelae in offspring, particularly affecting growth and renal-cardiovascular function. However, there is little understanding as to whether hypertension and kidney disease occur because of a primary nephron deficit or whether controlling postnatal growth can result in normal renal-cardiovascular phenotypes. To investigate this, female Sprague-Dawley rats were fed either a low-protein (LP, 8.4% protein) or normal-protein (NP, 19.4% protein) diet prior to mating and until offspring were weaned at postnatal day (PN) 21. Offspring were then fed a non 'growth' (4.6% fat) which ensured that catch-up growth did not occur. Offspring growth was determined by weight and dual energy X-ray absorptiometry. Nephron number was determined at PN21 using the disector-fractionator method. Kidney function was measured at PN180 and PN360 using clearance methods. Blood pressure was measured at PN360 using radio-telemetry. Body weight was similar at PN1, but by PN21 LP offspring were 39% smaller than controls (Pdiet < 0.001). This difference was due to proportional changes in lean muscle, fat, and bone content. LP offspring remained smaller than NP offspring until PN360. In LP offspring, nephron number was 26% less in males and 17% less in females, than NP controls (Pdiet < 0.0004). Kidney function was similar across dietary groups and sexes at PN180 and PN360. Blood pressure was similar in LP and NP offspring at PN360. These findings suggest that remaining on a slow growth trajectory after exposure to a suboptimal intrauterine environment does not lead to the development of kidney dysfunction and hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app