Add like
Add dislike
Add to saved papers

Candidate effector proteins from the maize tar spot pathogen Phyllachora maydis localize to diverse plant cell compartments.

Phytopathology 2022 July 12
Most fungal pathogens secrete effector proteins into host cells to modulate their immune responses, thereby promoting pathogenesis and fungal growth. One such fungal pathogen is the ascomycete Phyllachora maydis, which causes tar spot disease on leaves of maize (Zea mays). Sequencing of the P. maydis genome revealed 462 putatively secreted proteins of which 40 contain expected effector-like sequence characteristics. However, the subcellular compartments targeted by P. maydis effector candidate (PmECs) proteins remain unknown and it will be important to prioritize them for further functional characterization. To test the hypothesis that PmECs target diverse subcellular compartments, cellular locations of super Yellow Fluorescent Protein (sYFP)-tagged P. maydis effector candidate proteins were identified using a Nicotiana benthamiana-based heterologous expression system. Immunoblot analyses showed that most of the PmEC-fluorescent protein fusions accumulated protein in N. benthamiana, indicating the candidate effectors could be expressed in dicot leaf cells. Laser-scanning confocal microscopy of N. benthamiana epidermal cells revealed most of the P. maydis putative effectors localized to the nucleus and cytosol. One candidate effector, PmEC01597, localized to multiple subcellular compartments including the nucleus, nucleolus, and plasma membrane while an additional putative effector, PmEC03792, preferentially labelled both the nucleus and nucleolus. Intriguingly, one candidate effector, PmEC04573, consistently localized to the stroma of chloroplasts as well as stroma-containing tubules (stromules). Collectively, these data suggest effector candidate proteins from P. maydis target diverse cellular organelles and may thus provide valuable insights into their putative functions as well as host processes potentially manipulated by this fungal pathogen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app