Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Mirtazapine treatment in a young female mouse model of Rett syndrome identifies time windows for the rescue of early phenotypes.

Rett Syndrome (RTT) is a rare X-linked neurodevelopmental disorder, mainly caused by mutations in the MECP2 gene. Reduction in monoamine levels in RTT patients and mouse models suggested the possibility to rescue clinical phenotypes through antidepressants. Accordingly, we tested mirtazapine (MTZ), a noradrenergic and specific-serotonergic tetracyclic antidepressant (NaSSA). In previous studies, we showed high tolerability and significant positive effects of MTZ in male Mecp21m1.1Bird -knock-out mice, adult female Mecp2tm1.1Bird -heterozygous (Mecp2+/- ) mice, and adult female RTT patients. However, it remained to explore MTZ efficacy in female Mecp2+/- mice at young ages. As RTT-like phenotypes in young Mecp2+/- mice have been less investigated, we carried out a behavioural characterization to analyze Mecp2+/- mice in "early adolescence" (6 weeks) and "young adulthood" (11 weeks) and identified several progressive phenotypes. Then, we evaluated the effects of either a 15- or a 30-day MTZ treatment on body weight and impaired motor behaviours in 11-week-old Mecp2+/- mice. Finally, since defective cortical development is a hallmark of RTT, we performed a histological study on the maturation of perineuronal nets (PNNs) and parvalbuminergic (PV) neurons in the primary motor cortex. The 30-day MTZ treatment was more effective than the shorter 15-day treatment, leading to the significant rescue of body weight, hindlimb clasping and motor learning in the accelerating rotarod test. Behavioural improvement was associated with normalized PV immunoreactivity levels and PNN thickness. These results support the use of MTZ as a new potential treatment for adolescent girls affected by RTT and suggest a possible mechanism of action.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app