Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Orexin A Suppresses the Expression of Exosomal PD-L1 in Colon Cancer and Promotes T Cell Activity by Inhibiting JAK2/STAT3 Signaling Pathway.

BACKGROUND: Colon cancer, ranked third in cancer related mortality, is the most common malignant cancer of digestive tract. Though immune checkpoint inhibitors show promising efficacy in colon cancer, a rather high unresponsive rate and recurrence rate requires further elucidation of the underlying regulatory mechanism of cancer-related immunity.

AIMS: To study the regulatory function of Orexin A in the expression of exosomal PD-L1 and T cell activity.

METHODS: Orthotopic colon cancer transplantation mice model were established to study the cancer growth and immune infiltration between Orexin A treated group and untreated group. In vitro studies using mouse CT-26 and human HCT-116 colon cancer cell model studied the effect of Orexin A on cellular and exosomal PD-L1 expression. Co-culturing Jurkat cells with exosomes delivered by cancer cells treated with Orexin A, PD-L1 knockdown and PBS studied different effects on T cell. Comparing Orexin A with WP1066, a JAK2/STAT3 inhibitor verified the mechanism of these changes.

RESULTS: The growth rate of orthotopic transplanted colon cancer was slower in Orexin A treated group, with lower PD-L1 expression and higher immune infiltration. Orexin A could inhibit cellular and exosomal PD-L1 expression. The decreased expression of PD-L1 in exosomes could promote the activity of Jurkat cells secreting higher level of IFN-γ and IL-2. Orexin A showed a similar effect like WP1066 which proved JAK2/STAT3 signaling pathway was its downstream signaling pathway.

CONCLUSIONS: Orexin A could suppress the expression of exosomal PD-L1 in colon cancer cells and promote T cells activity by inhibiting JAK2/STAT3 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app