Add like
Add dislike
Add to saved papers

Precision-Microfabricated Fiber-Optic Probe for Intravascular Pressure and Temperature Sensing.

Small form-factor sensors are widely used in minimally invasive intravascular diagnostic procedures. Manufacturing complexities associated with miniaturizing current fiber-optic probes, particularly for multi-parameter sensing, severely constrain their adoption outside of niche fields. It is especially challenging to rapidly prototype and iterate upon sensor designs to optimize performance for medical devices. In this work, a novel technique to construct a microscale extrinsic fiber-optic sensor with a confined air cavity and sub-micron geometric resolution is presented. The confined air cavity is enclosed between a 3 μm thick pressure-sensitive distal diaphragm and a proximal temperature-sensitive plano-convex microlens segment unresponsive to changes in external pressure. Simultaneous pressure and temperature measurements are possible through optical interrogation via phase-resolved low-coherence interferometry (LCI). Upon characterization in a simulated intravascular environment, we find these sensors capable of detecting pressure changes down to 0.11 mmHg (in the range of 760 to 1060 mmHg) and temperature changes of 0.036 °C (in the range 34 to 50 °C). By virtue of these sensitivity values suited to intravascular physiological monitoring, and the scope of design flexibility enabled by the precision-fabricated photoresist microstructure, it is envisaged that this technique will enable construction of a wide range of fiber-optic sensors for guiding minimally invasive medical procedures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app