Journal Article
Review
Add like
Add dislike
Add to saved papers

Plasma membrane redox enzymes: new therapeutic targets for neurodegenerative diseases.

Mitochondrial dysfunction caused by oxidative stress appears at early stages of aging and age-related diseases. Plasma membrane redox enzymes act in a compensatory manner to decrease oxidative stress and supply reductive capacity to ensure cell survival. Plasma membrane redox enzymes transfer electrons from NAD(P)H to oxidized ubiquinone and α-tocopherol, resulting in inhibition of further oxidative damage. Plasma membrane redox enzymes and their partners are affected by aging, leading to progression of neurodegenerative disease pathogenesis. Up-regulating plasma membrane redox enzymes via calorie restriction and phytochemicals make cells more resistant to oxidative damage under stress conditions by maintaining redox homeostasis and improving mitochondrial function. Investigation into plasma membrane redox enzymes can provide mechanistic details underlying the relationships between plasma membrane redox enzymes and mitochondrial complexes and provide a good therapeutic target for prevention and delay of neurodegenerative disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app