Add like
Add dislike
Add to saved papers

Protective effect of dexmedetomidine against organ dysfunction in a two-hit model of hemorrhage/resuscitation and endotoxemia in rats.

Dexmedetomidine (DEX), a selective agonist of α2-adrenergic receptors, has anti-inflammation properties and potential beneficial effects against trauma, shock, or infection. Therefore, this study aimed to investigate whether DEX might protect against multiple-organ dysfunction in a two-hit model of hemorrhage/resuscitation (HS) and subsequent endotoxemia. Eighty Wistar rats were randomized into four groups: NS (normal saline), HS/L (HS plus lipopolysaccharide), HS/L+D (HS/L plus dexmedetomidine), and HS/L+D+Y (HS/L+D plus yohimbine). Six hours after resuscitation, blood gas (PaO2) and serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), blood urine nitrogen (BUN), creatinine (Cr), TNF-α, IL-β, IL-6, IL-8, IL-10, and nitric oxide (NO) were measured. The histopathology was assayed by staining. Malondialdehyde (MDA) and superoxide dismutase (SOD) levels and heme oxygenase-1 (HO-1) were assayed. The PaO2 levels in HS/L rats were lower whereas the ALT, AST, BUN, Cr, TNF-α, IL-β, IL-6, IL-8, IL-10, and NO levels were higher compared to the control group. The HS/L+D increased PaO2 and further increased IL-10 and decreased ALT, AST, BUN, Cr, TNF-α, IL-β, IL-6, IL-8, and NO levels of the HS/L groups. In addition, the MDA in the HS/L groups increased whereas SOD activity decreased compared to the control group. Moreover, the HO-1 expression levels were increased by DEX administration in lung, liver, and kidney tissues. Lungs, livers, and kidneys of the HS/L group displayed significant damage, but such damage was attenuated in the HS/L+D group. All of the above-mentioned effects of DEX were partly reversed by yohimbine. DEX reduced multiple organ injury caused by HS/L in rats, which may be mediated, at least in part, by α2-adrenergic receptors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app