Add like
Add dislike
Add to saved papers

In vitro evaluation of copper oxide nanoparticle-induced cytotoxicity and oxidative stress using human embryonic kidney cells.

This study aimed to evaluate the in vitro cytotoxicity and oxidative stress induced by the copper oxide nanoparticles (CuO NPs) in human embryonic kidney cell line (HEK-293) cells following exposure. CuO NPs size <50 nm were used in this study. HEK-293 cell cultures were exposed to different concentrations of CuO NPs between 3 µg/ml and 300 µg/ml and quartz (known as cytotoxic agent) and assessed for cell viability-mitochondrial function (MTT assay), cell membrane damage (lactate dehydrogenase (LDH) assay), reduced glutathione (GSH), interleukin-8 (IL-8), and lipid peroxidation levels. The IC50 value of NPs was found to be 65.5 µg/ml. Exposure of HEK cells to CuO NPs (10-300 µg/ml) resulted in concentration-dependent cell membrane damage, increased production of IL-8, increased thiobarbituric acid reactive substance (TBARS), and decreased intracellular GSH levels. The significant increases in IL-8, TBARS, and LDH levels along with decreased GSH levels indicated induction of oxidative stress in cells. Our preliminary data suggest that oxidative stress might contribute to CuO NPs-induced cytotoxicity in HEK-293 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app