Add like
Add dislike
Add to saved papers

Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning.

European Radiology 2019 September
OBJECTIVES: Distinguishing between kidney stones and phleboliths can constitute a diagnostic challenge in patients undergoing unenhanced low-dose CT (LDCT) for acute flank pain. We sought to investigate the accuracy of radiomics and a machine-learning classifier in differentiating between kidney stones and phleboliths on LDCT.

METHODS: Radiomics features were extracted following a semi-automatic segmentation of kidney stones and phleboliths for two independent consecutive cohorts of patients undergoing LDCT for acute flank pain. Radiomics features from the first cohort of patients (n = 369) were ultimately used to train a machine-learning model designed to distinguish kidney stones (n = 211) from phleboliths (n = 201). Classification performance was assessed on the second independent cohort (i.e., testing set) (kidney stones n = 24; phleboliths n = 23) using positive and negative predictive values (PPV and NPV), area under the receiver operating curves (AUC), and permutation testing.

RESULTS: Our machine-learning classification model trained on radiomics features achieved an overall accuracy of 85.1% on the independent testing set, with an AUC of 0.902, PPV of 81.5%, and NPV of 90.0%. Classification accuracy was significantly better than chance on permutation testing (p < 0.05, permutation p value).

CONCLUSION: Radiomics and machine learning enable accurate differentiation between kidney stones and phleboliths on LDCT in patients presenting with acute flank pain.

KEY POINTS: • Combining a machine-learning algorithm with radiomics features extracted for abdominopelvic calcification on LDCT offers a highly accurate method for discriminating phleboliths from kidney stones. • Our radiomics and machine-learning model proved robust for CT acquisition and reconstruction protocol when tested in comparison with an external independent cohort of patients with acute flank pain. • The high performance of the radiomics-based automatic classification model in differentiating phleboliths from kidney stones indicates its potential as a future diagnostic tool for equivocal abdominopelvic calcifications in the setting of suspected renal colic.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app