Add like
Add dislike
Add to saved papers

A review on microelectrode recording selection of features for machine learning in deep brain stimulation surgery for Parkinson's disease.

OBJECTIVE: This study seeks to systematically review the selection of features and algorithms for machine learning and automation in deep brain stimulation surgery (DBS) for Parkinson's disease. This will assist in consolidating current knowledge and accuracy levels to allow greater understanding and research to be performed in automating this process, which could lead to improved clinical outcomes.

METHODS: A systematic literature review search was conducted for all studies that utilized machine learning and DBS in Parkinson's disease.

RESULTS: Ten studies were identified from 2006 utilizing machine learning in DBS surgery for Parkinson's disease. Different combinations of both spike independent and spike dependent features have been utilized with different machine learning algorithms to attempt to delineate the subthalamic nucleus (STN) and its surrounding structures.

CONCLUSION: The state-of-the-art algorithms achieve good accuracy and error rates with relatively short computing time, however, the currently achievable accuracy is not sufficiently robust enough for clinical practice. Moreover, further research is required for identifying subterritories of the STN.

SIGNIFICANCE: This is a comprehensive summary of current machine learning algorithms that discriminate the STN and its adjacent structures for DBS surgery in Parkinson's disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app