Add like
Add dislike
Add to saved papers

The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data.

Sensors 2008 Februrary 23
Spectral mixing is a problem inherent to remote sensing data and results in fewimage pixel spectra representing "pure" targets. Linear spectral mixture analysis isdesigned to address this problem and it assumes that the pixel-to-pixel variability in ascene results from varying proportions of spectral endmembers. In this paper we present adifferent endmember-search algorithm called the Successive Projection Algorithm (SPA).SPA builds on convex geometry and orthogonal projection common to other endmembersearch algorithms by including a constraint on the spatial adjacency of endmembercandidate pixels. Consequently it can reduce the susceptibility to outlier pixels andgenerates realistic endmembers.This is demonstrated using two case studies (AVIRISCuprite cube and Probe-1 imagery for Baffin Island) where image endmembers can bevalidated with ground truth data. The SPA algorithm extracts endmembers fromhyperspectral data without having to reduce the data dimensionality. It uses the spectralangle (alike IEA) and the spatial adjacency of pixels in the image to constrain the selectionof candidate pixels representing an endmember. We designed SPA based on theobservation that many targets have spatial continuity (e.g. bedrock lithologies) in imageryand thus a spatial constraint would be beneficial in the endmember search. An additionalproduct of the SPA is data describing the change of the simplex volume ratio between successive iterations during the endmember extraction. It illustrates the influence of a newendmember on the data structure, and provides information on the convergence of thealgorithm. It can provide a general guideline to constrain the total number of endmembersin a search.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app