Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Associated bacterial flora, growth, and toxicity of cultured benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus.

The growth, toxicity, and associated bacterial flora of 10 clonal cultures of the toxic benthic dinoflagellates Ostreopsis lenticularis and Gambierdiscus toxicus isolated from the coastal waters of southwest Puerto Rico have been examined. Clonal cultures of O. lenticularis grew more rapidly and at broader temperature ranges than those of G. toxicus. All five Ostreopsis clones were toxic, while only one of the five Gambierdiscus clones was poisonous. The degree of toxicity among poisonous clones was highly variable. The number of associated bacterial genera and their frequency of occurrence were quite variable among clones of both dinoflagellate genera. Bacterial isolates represented six genera (Nocardia, Pseudomonas, Vibrio, Aeromonas, Flavobacterium, and Moraxella) in addition to coryneform bacteria. Extracts of dinoflagellate-associated bacteria grown in pure culture were not toxic. Gambierdiscus clones were characterized by the frequent presence of Pseudomonas spp. (four of five clones) and the absence of coryneforms. In O. lenticularis, only one of five clones showed the presence of Pseudomonas spp., and Moraxella sp. was absent altogether. Detailed analyses of toxicity and associated microflora in a selected Ostreopsis clone, repeatedly cultivated (four times) over a period of 160 days, showed that peak cell toxicities developed in the late static and early negative culture growth phases. Peak Ostreopsis cell toxicities in the stationary phase of culture growth were correlated with significant increases in the percent total bacteria directly associated with these cells. Changes in the quantity of bacteria directly associated with microalgal cell surfaces and extracellular matrices during culture growth may be related to variability and degree of toxicity in these laboratory-cultured benthic dinoflagellates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app