Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Hyaluronan-CD44 interaction stimulates keratinocyte differentiation, lamellar body formation/secretion, and permeability barrier homeostasis.

In this study we investigated whether hyaluronan (HA)-CD44 interaction influences epidermal structure and function. Our data show that CD44 deficiency is accompanied by reduction in HA staining in CD44 knockout (k/o) mouse skin leading to a marked thinning of epidermis versus wild-type mouse skin. A significant delay in the early barrier recovery (following acute barrier disruption) occurs in CD44 k/o versus wild-type mouse skin. To assess the basis for these alterations in CD44 k/o mouse epidermis, we determined that differentiation markers are greatly reduced in the epidermis of CD44 k/o versus wild-type mice, while conversely HA binding to CD44 triggers differentiation in cultured human keratinocytes. CD44 downregulation (using CD44 small interfering RNAs) also inhibits HA-mediated keratinocyte differentiation. Slower barrier recovery in CD44 k/o mice could be further attributed to reduced lamellar body formation, loss of apical polarization of LB secretion, and downregulation of cholesterol synthesis. Accordingly, HA-CD44 binding stimulates both LB formation and secretion. Together, these observations demonstrate new roles for HA-CD44 interaction in regulating both epidermal differentiation and lipid synthesis/secretion, which in turn influence permeability barrier homeostasis. HA-CD44 signaling could comprise a novel approach to treat skin disorders characterized by abnormalities in differentiation, lipid synthesis, and/or barrier function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app