Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Repression of interleukin-5 transcription by the glucocorticoid receptor targets GATA3 signaling and involves histone deacetylase recruitment.

Glucocorticoids are the mainstay of asthma therapy and mediate the repression of a number of cytokine genes, such as Interleukin (IL)-4, -5, -13, and granulocyte macrophage colony-stimulating factor (GM-CSF), which are central to the pathogenesis of asthmatic airway inflammation. The glucocorticoid receptor (GR) mediates repression by a number of diverse mechanisms. We have previously suggested that one such repressive activity is by direct binding of GR to elements within the GM-CSF enhancer that are recognized by the nuclear factor of activated T cells.activator protein 1 (NF-AT.AP-1) complex. We reasoned that, because many cytokine genes activated in asthma are transcriptionally regulated by the recruitment of this complex to DNA, their binding sites might provide a target for GR to mediate its repressive effects. Here, we show that transcriptional repression of the Interleukin-5 gene involves recruitment of GR to a DNA region located within the IL-5 proximal promoter, which is bound by NF-AT and AP-1 proteins. GR recruitment had a profound effect upon the activation capacity of GATA3, which has a binding site close to the NF-AT.AP-1 domain in both IL-5 and IL-13 promoters. Repression by GR involves co-repressor recruitment, because treatment of transfected cells with the deacetylase inhibitor trichostatin A caused a partial relief of repression. Additionally, repression could be augmented by co-transfection of cells with a histone deacetylase (HDAC1). These data suggest that the local recruitment of GR causes repression by inhibiting transcriptional activation by GATA3, a key tissue-specific determinant of expression of Th2 cytokines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app