Comparative Study
In Vitro
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Long-term regulation of N-methyl-D-aspartate receptor subunits and associated synaptic proteins following hippocampal synaptic plasticity.

Synaptic plasticity in the dentate gyrus is dependent on activation of the N-methyl-D-aspartate (NMDA)-subtype of glutamate receptors. In this study, we show that synaptic plasticity in turn regulates NMDA receptors, since subunits of the NMDA receptor complex are bidirectionally and independently regulated in the dentate gyrus following activation of perforant synapses in awake animals. Low-frequency stimulation that produced a mild synaptic depression resulted in a decrease in the NMDA receptor subunits NR1 and NR2B 48 h following stimulation. High-frequency stimulation that produced long-term potentiation resulted in an increase in NR1 and NR2B at the same time point. Further investigations revealed that in contrast to NR2B, NR1 levels increased gradually after long-term potentiation induction, reaching a peak level at 48 h, and were insensitive to the competitive NMDA receptor antagonist 3-3(2-carboxypiperazin-4-yl) propyl-1-phosphate. The increased levels of NR1 and NR2B at 48 h were found associated with synaptic membranes and with increased NMDA receptor-associated proteins, postsynaptic density protein 95, neuronal nitric oxide synthase and Ca(2+)/calmodulin-dependent protein kinase II, alpha subunit. These data suggest that the persistence of long-term potentiation is associated with an increase in the number of NMDA receptor complexes, which may be indicative of an increase in synaptic contact area.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app