Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Tracer kinetic model of regional pulmonary function using positron emission tomography.

To determine the spatial distributions of pulmonary perfusion, shunt, and ventilation, we developed a compartmental model of regional (13)N-labeled molecular nitrogen ((13)NN) kinetics measured from positron emission tomography (PET) images. The model features a compartment for right heart and pulmonary vasculature and two compartments for each region of interest: 1) aerated alveolar units and 2) alveolar units with no gas content (shunting). The model was tested on PET data from normal animals (dogs and sheep) and from animals with experimentally injured lungs simulating acute respiratory distress syndrome. The analysis yielded estimates of regional perfusion, shunt fraction, and specific ventilation with excellent goodness-of-fit to the data (R(2) > 0.99). Model parameters were estimated to within 10% accuracy in the presence of exaggerated levels of experimental noise by using a Monte Carlo sensitivity analysis. Main advantages of the present model are that 1) it separates intraregional blood flow to aerated alveolar units from that shunting across nonaerated units and 2) it accounts and corrects for intraregional tracer removal by shunting blood when estimating ventilation from subsequent washout of tracer. The model was thus found to provide estimates of regional parameters of pulmonary function in sizes of lung regions that could potentially approach the intrinsic resolution for PET images of (13)NN in lung (approximately 7.0 mm for a multiring PET camera).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app