Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Resistance and tolerance in a host plant-holoparasitic plant interaction: genetic variation and costs.

Host organisms are believed to evolve defense mechanisms (i.e., resistance and/or tolerance) under selective pressures exerted by natural enemies. A prerequisite for the evolution of resistance and tolerance is the existence of genetic variation in these traits for natural selection to act. However, selection for resistance and/or tolerance may be constrained by negative genetic correlations with other traits that affect host fitness. We studied genetic variation in resistance and tolerance against parasitic infection and the potential fitness costs associated with these traits using a novel study system, namely the interaction between a flowering plant and a parasitic plant. In this system, parasitic infection has significant negative effects on host growth and reproduction and may thus act as a selective agent. We conducted a greenhouse experiment in which we grew host plants, Urtica dioica, that originated from a single natural population and represented 20 maternal families either uninfected or infected with the holoparasitic dodder, Cuscuta europaea. that originated from the same site. We calculated correlations among resistance, tolerance, and host performance to test for costs of resistance and tolerance. We measured resistance as parasite performance (quantitative resistance) and tolerance as the slopes of regressions relating the vegetative and reproductive biomass of host plants to damage level (measured as parasite biomass). We observed significant differences among host families in parasite resistance and in parasite tolerance in terms of reproductive biomass, a result that suggests genetic variation in these traits. Furthermore, we found differences in resistance and tolerance between female and male host plants. In addition, the correlations indicate costs of resistance in terms of host growth and reproduction and costs of tolerance in terms of host reproduction. Our results thus indicate that host tolerance and resistance can evolve as a response to infection by a parasitic plant and that costs of resistance and tolerance may be one factor maintaining genetic variation in these traits.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app