Journal Article
Review
Add like
Add dislike
Add to saved papers

Regulation of intrinsic regenerative properties and axonal plasticity in cerebellar Purkinje cells.

Axon regeneration in the mammalian brain requires that injured neurons upregulate a specific set of growth-associated genes. To investigate the mechanisms that control the intrinsic growth properties of adult central neurons, we have examined the response to injury and regenerative potential of different cerebellar and precerebellar neuron populations. Axotomised neurons in the inferior olive, deep cerebellar nuclei and lateral reticular nucleus upregulate growth-associated molecules and regenerate their neurites into growth-permissive transplants. In contrast, Purkinje cells fail to respond to injury and show extremely poor regenerative capabilities. Targeted overexpression of GAP-43 promotes Purkinje axon plasticity, indicating that the weak regenerative potential of these neurons is mainly due to the inability to activate growth-associated genes. Application of neutralising antibodies against the myelin-associated protein Nogo-A induces cell body changes and axonal sprouting in intact Purkinje cells. In addition, immature injured Purkinje cells respond to axotomy and regenerate transected neurites, but they progressively lose this ability during postnatal development in parallel with myelin formation and the establishment of intracortical connections. These results indicate that the intrinsic growth potential of Purkinje cells is constitutively inhibited by environmental signals directed at stabilising the mature connectivity and preventing aberrant neuritic plasticity. Such a strict control eventually leads to restrict the regenerative capabilities of these neurons after injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app