Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Simultaneous determination of anionic intermediates for Bacillus subtilis metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry.

A method for simultaneous determination of anionic metabolites based on capillary electrophoresis (CE) coupled to electrospray ionization mass spectrometry is described. To prevent current drop by the system, electroosmotic flow (EOF) reversal by using a cationic polymer-coated capillary was indispensable. A mixture containing 32 standards including carboxylic acids, phosphorylated carboxylic acids, phosphorylated saccharides, nucleotides, and nicotinamide and flavin adenine coenzymes of glycolysis and the tricarboxylic acid cycle pathways were separated by CE and selectively detected by a quadrupole mass spectrometer with a sheath-flow electrospray ionization interface. Key to the analysis was EOF reversal using a cationic polymer-coated capillary and an electrolyte system consisting of 50 mM ammonium acetate, pH 9.0. The relative standard deviations of the method were better than 0.4% for migration times and between 0.9% and 5.4% for peak areas. The concentration detection limits for these metabolites were between 0.3 and 6.7 micromol/L with pressure injection of 50 mbar for 30 s (30 nL); i.e., mass detection limits ranged from 9 to 200 fmol, at a signal-to-noise ratio of 3. This method was applied to the comprehensive analysis of metabolic intermediates extracted from Bacillus subtilis, and 27 anionic metabolites could be directly detected and quantified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app