Induction and disappearance of G2 chromatid breaks in lymphocytes after low doses of low-LET gamma-rays and high-LET fast neutrons

A Vral, H Thierens, A Baeyens, L De Ridder
International Journal of Radiation Biology 2002, 78 (4): 249-57

PURPOSE: To determine by means of the G2 assay the number of chromatid breaks induced by low-LET gamma-rays and high-LET neutrons, and to compare the kinetics of chromatid break rejoining for radiations of different quality.

MATERIALS AND METHODS: The G2 assay was performed on blood samples of four healthy donors who were irradiated with low-LET gamma-rays and high-LET neutrons. In a first set of experiments a dose-response curve for the formation of chromatid breaks was carried out for gamma-rays and neutrons with doses ranging between 0.1 and 0.5 Gy. In a second set of experiments, the kinetics of chromatid break formation and disappearance were investigated after a dose of 0.5 Gy using post-irradiation times ranging between 0.5 and 3.5 h. For the highest dose of 0.5 Gy, the number of isochromatid breaks was also scored.

RESULTS: No significant differences in the number of chromatid breaks were observed between low-LET gamma-rays and high-LET neutrons for the four donors at any of the doses given. The dose-response curves for the formation of chromatid breaks are linear for both radiation qualities and RBEs = 1 were obtained. Scoring of isochromatid breaks at the highest dose of 0.5 Gy revealed that high-LET neutrons were, however, more effective at inducing isochromatid breaks (RBE = 6.2). The rejoining experiments further showed that the kinetics of disappearance of chromatid breaks following irradiation with low-LET gamma-rays or high-LET neutrons were not significantly different. Half-times of 0.92 h for gamma-rays and 0.84 h for neutrons were obtained.

CONCLUSIONS: Applying the G2 assay, the results demonstrate that at low doses of irradiation, the induction as well as the disappearance of chromatid breaks is independent of the LET of the radiation qualities used (0.24 keV x microm(-1) 60Co gamma-rays and 20 keV x microm(-1) fast neutrons). As these radiation qualities produce the same initial number of double-strand breaks, the results support the signal model that proposes that chromatid breaks are the result of an exchange process which is triggered by a single double-strand break.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"