Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Real-time RT-PCR quantification of insulin-like growth factor (IGF)-1, IGF-1 receptor, IGF-2, IGF-2 receptor, insulin receptor, growth hormone receptor, IGF-binding proteins 1, 2 and 3 in the bovine species.

Reverse transcription (RT) followed by polymerase chain reaction (PCR) is the technique of choice for analysing mRNA in extremely low abundance. Real-time RT-PCR using SYBR Green I detection combines the ease and necessary exactness to be able to produce reliable as well as rapid results. To obtain highly accurate and reliable results in a real-time RT-PCR a highly defined calibration curve is needed. We designed and developed nine different calibration curves, based on recombinant DNA plasmid standards and established them on a constant real-time PCR platform for the following factors: growth hormone receptor (GHR), insulin-like growth factor (IGF)-1, IGF-1 receptor (IGF-1R), IGF-2, IGF-2 receptor (IGF-2R), insulin receptor (INSR), and IGF-binding proteins (IGF-BP) 1, 2 and 3. Developed assays were applied in the LightCycler system on bovine ileum and liver total RNA and showed high specificity and sensitivity of quantification. All assays had a detection limit of under 35 recombinant DNA molecules present in the capillary. The SYBR Green I determination resulted in a reliable and accurate quantification with high test linearity (Pearson correlation coefficient r > 0.99) over seven orders of magnitude from <10(2) to >10(8) recombinant DNA start molecules and an assay variation of maximal 5.3%. Applicability of the method was shown by analysing mRNA levels in newborn calves: mRNA concentrations per gram tissue of mRNAs of IGF-1, IGF-1R, IGF-2, IGF-2R, GHR, INSR, and IGF-BP1, 2 and 3 were all different between in liver and ileum and the traits all exhibited individual differences.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app