Add like
Add dislike
Add to saved papers

Diacylglycerols induce both ion pumping in patch-clamped guard-cell protoplasts and opening of intact stomata.

Stomatal guard cells in leaves regulate the apertures of microscopic pores through which photosynthetic gas exchange and water vapor loss occur. Environmental signals, including light, high humidity, and low CO2 concentrations, open stomata by increasing the volume of guard cells. Activation of a plasma membrane H+ pump initiates K+ and Cl- influx, accompanied by malate synthesis, resulting in osmotic water flow into the guard cells, a bowing apart of the guard-cell pair, and consequent stomatal opening. Physiological and electrophysiological techniques were employed to investigate the possibility that a second-messenger lipid, 1,2-diacylglycerol, is involved in the transduction of opening stimuli. The synthetic diacylglycerols 1,2-dihexanoylglycerol and 1,2-dioctanoylglycerol enhanced light-induced stomatal opening in Commelina communis and induced stomatal opening under darkness, whereas an isomer with no known second-messenger role, 1,3-dioctanoylglycerol, did not affect stomatal responses. 1-(5-Isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, the enzyme typically activated by 1,2-diacylglycerol in animal cells, inhibited light-stimulated stomatal opening and enhanced dark-induced stomatal closure. N-[(2-Methylamino)ethyl]-5-isoquinolinesulfonamide (H-8), which inhibits cyclic nucleotide-dependent protein kinases preferentially over lipid-dependent protein kinases such as protein kinase C, had little effect on stomatal apertures. Whole-cell patch clamping of guard-cell protoplasts of Vicia faba revealed that 1,2-dihexanoylglycerol and 1-oleoyl-2-acetylglycerol activated an ATP-dependent, voltage-independent current, suggesting activation of an electrogenic ion pump such as the H+ pump. Diacylglycerol or functionally similar lipids may act through protein phosphorylation to provide the intracellular signals that mediate H+-ATPase activation and stomatal opening in response to light or other opening stimuli.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app