Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

Microleakage of class V resin composite restorations after bur, air-abrasion or Er:YAG laser preparation.

Operative Dentistry 2001 September
This in vitro study compared the microleakage of Class V resin composite restorations placed in cavities prepared with a high-speed dental bur, air-abrasion or Er:YAG laser. Twenty sound extracted human third molars were selected and randomly assigned to four equal Groups (n=10): Group I, cavities were cut by dental drill at high-speed; Group II, aluminum oxide air-abrasion was used for cavity preparation, and in Groups III and IV, cavities were prepared by Er:YAG laser. Following cavity preparation, Groups I and II were acid-etched, Group III was treated only by Er:YAG laser and Group IV was conditioned by Er:YAG laser followed by acid-etching. Cavities were restored (Single Bond + Z-100) and the teeth stored for seven days in distilled water. Then, the restorations were polished and the specimens thermocycled, immersed in a 0.2% Rhodamine solution, sectioned and analyzed for leakage at the occlusal (enamel) and cervical (dentin/cementum) interfaces using an optical microscope connected to a video camera. The images were digitized and software was utilized for microleakage assessment. Upon analyzing the results, statistically significant differences (p<0.01) between the occlusal and cervical regions for all groups was observed, and, as a rule, there was better marginal sealing at the enamel margins. The highest degree of infiltration was observed for cavities prepared and treated exclusively by Er:YAG (Group III). The other experimental groups showed statistical similarities in the amount of marginal leakage at the enamel margins. However, at the cervical margins, there was a significant difference (p<0.05) between Group I and the remaining groups. None of the techniques completely eliminated marginal microleakage at the dentin/ cementum margins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app