Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness.

Aortic valve incompetence due to aortic root dilation may be surgically corrected by resuspension of the native valve within a vascular graft. This study was designed to examine the effect of graft shape and material properties on aortic valve function, using a three-dimensional finite-element model of the human aortic valve and root. First, the normal root elements in the model were replaced with graft elements, in either a cylindrical or a "pseudosinus" shape. Next, the elements were assigned the material properties of either polyethylene terephthalate, expanded polytetrafluoroethylene, or polyurethane. Diastolic pressures were applied, and stresses, strains, and coaptation were recorded for the valve, root, and graft. Regarding shape, the cylindrical graft models increased the valve stresses by up to 173%, whereas the root-shaped graft model increased valve stresses by up to 40% as compared to normal. Regarding material properties, the polyurethane models demonstrated valve stress, strain, and coaptation values closest to normal, for either root shape. Graft shape had a greater effect on the simulated valve function than did the material property of the graft. Optimizing the shape and material design of the graft may result in improved longevity of the spared valve if a normal environment is restored.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app