COMPARATIVE STUDY
JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL

Feasibility of tidal volume-guided ventilation in newborn infants: a randomized, crossover trial using the volume guarantee modality

I U Cheema, J S Ahluwalia
Pediatrics 2001, 107 (6): 1323-8
11389251

BACKGROUND AND AIM: Volume guarantee (VG) is a new composite mode of pressure-limited ventilation, available on the Dräger Babylog 8000 ventilator, which allows the clinician to set a target mean tidal volume to be delivered while still maintaining control over peak airway pressures. This study aimed to investigate the feasibility and efficacy of this mode of ventilation in premature newborn infants with respiratory distress syndrome (RDS).

METHODS: Two groups of infants were studied: those receiving synchronized intermittent positive pressure ventilation (SIPPV) in early phase of RDS (group 1) and those in recovery phase of RDS being weaned from artificial ventilation through synchronized intermittent mandatory ventilation (SIMV; group 2). Both groups of infants were studied over a 4-hour period. Before the start of the study, the infants were either receiving SIPPV (group 1) or SIMV (group 2). Infants in group 1 were randomized to either continue on SIPPV for the first hour of the study or to receive SIPPV plus VG for the first hour. Subsequently, the 2 modes were used alternately for the remaining three 1-hour periods. Similarly, infants in group 2 were randomized to either continue on SIMV for the first hour of the study or to receive SIMV plus VG for the first hour. Data on ventilation parameters and transcutaneous carbon dioxide and oxygen were collected continuously.

RESULTS: Forty infants were studied, 20 in each group. The mean (standard error) gestational age was 27.9 (0.3) weeks; birth weight was 1064 (60) g. No adverse events were observed during the study. Fractional inspired oxygen during SIMV plus VG was 0.31 (0.3); during SIMV, 0.31 (0.3); during SIPPV plus VG, 0.41 (0.4); and during SIPPV, 0.40 (0.4). Transcutaneous carbon dioxide pressure during SIMV plus VG was 6.0 (2.2) kPa; during SIMV, 5.9 (2.2) kPa; during SIPPV plus VG, 6.4 (2.9) kPa; and during SIPPV, 6.4 (2.8) kPa. Transcutaneous partial pressure of oxygen during SIMV plus VG was 8.4 (8.7) kPa; during SIMV, 8.6 (8.8) kPa; during SIPPV plus VG, 7.6 (4.0) kPa; and during SIPPV, 7.7 (4.2) kPa. None of these differences was statistically significant. The mean (standard error) peak inspiratory pressure used during SIMV was 17.1 (3.4) cm of water; during SIMV plus VG, 15.0 (7.5) cm of water; during SIPPV plus VG, 17.1 (9.3) cm of water; and during SIPPV, 18.7 (8.3) cm of water. The mean airway pressure during SIMV plus VG was 6.5 (3.1) cm of water; during SIMV, 6.9 (2.8) cm of water; during SIPPV plus VG, 9.6 (4.5) cm of water; and during SIPPV, 9.8 (4.6) cm of water.

CONCLUSION: VG seems to be a stable and feasible ventilation mode for neonatal patients and can achieve equivalent gas exchange using statistically significant lower peak airway pressures both during early and recovery stages of RDS.ventilation, airway pressure, volume guarantee, tidal volume.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read
11389251
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"