Add like
Add dislike
Add to saved papers

Supplementation with vitamin C, vitamin E or beta-carotene influences osmotic fragility and oxidative damage of erythrocytes of zinc-deficient rats.

Dietary zinc deficiency in rats causes increased osmotic fragility of their erythrocytes. In this study, the influence of supplementary antioxidants (vitamin C, vitamin E or beta-carotene) on osmotic fragility, oxidative damage and components of the primary defense system of erythrocytes of zinc-deficient rats was investigated. Indicators of hemolysis in vivo were also examined. Five groups of 12 male rats were force-fed a zinc-adequate diet (control rats), a zinc-deficient diet or a zinc-deficient diet enriched with vitamin C, vitamin E or beta-carotene. Compared with the control rats, the rats fed the zinc-deficient diet without supplementary antioxidants had greater red blood cell osmotic fragility, higher concentrations of thiobarbituric acid-reactive substances and alanine, higher glutathione S-transferase activity, lower concentration of glutathione and activity of glutathione peroxidase as well as lower activity of superoxide dismutase in plasma (P < 0.05). Supplementation with antioxidants generally improved osmotic fragility in zinc-deficient rats without influencing zinc concentration or alkaline phosphatase activity in plasma, indicators of zinc status. At some of the hypotonic saline concentrations tested, vitamin C and beta-carotene significantly affected osmotic fragility. The zinc-deficient rats fed a diet without supplementary antioxidants had significantly higher concentrations of alanine in erythrocytes than the zinc-deficient rats supplemented with vitamin C, vitamin E or beta-carotene and had significantly higher levels of thiobarbituric acid-reactive substances in erythrocytes than the rats supplemented with beta-carotene. There was no indication of hemolysis in vivo in rats fed zinc-deficient diets. The results show that supplementary antioxidants decrease osmotic fragility and oxidative damage of erythrocytes in zinc-deficient rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app